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ABSTRACT

This paper presents a novel parallel algorithm capable of solving problems with mul-
tiple energy groups, such as reactor core problems, using energy dependent angular h-
adaptivity coupled with Dynamic Load Balancing (DLB). We use the C5G7 NEA bench-
mark as an example with our in-house code FETCH2 and compare runtimes and Contin-
uous Degrees of Freedom (CDOFs) between energy independent angular adapting runs
with and without DLB. Our results demonstrate a 32% reduction in CDOFs and a 38%
reduction in runtime in favour of the energy dependent angular adaptivity runs with DLB
when compared to energy independent angular adaptivity.
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1. INTRODUCTION

Radiation transport phenomena are usually modelled using the Boltzmann Transport Equation
(BTE). Computing the BTE can be done using either stochastic or deterministic computational
methods. The work presented in this paper focuses on a deterministic approach, which encom-
passes an angular discretisation with Haar wavelets capable of scalable, angular h-adaptivity on
unstructured finite element grids.

Real life applications of computational modelling for radiation phenomena include radiation shield-
ing problems or nuclear reactor simulations which can be challenging to compute due to the large
problem size, the complicated underlying geometries and the orders of magnitude differences in
the modelled quantities, e.g. neutron energies. To combat large problem sizes, modelling codes
can be designed to use multiple processors in order to increase the total computational power. Un-
structured meshes can be used to aid with the modelling of irregular and complicated geometries,
while adaptivity can help resolve quantities that are greatly varying through the computational
phase space.
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Combining in a code parallel computing, unstructured meshes, and adaptivity can be challeng-
ing, especially if such implementation needs to be performant. Adaptivity in parallel in particular
can hinder the performance of a code since its main functionality is to add or remove Degrees of
Freedom (DOFs) from the underlying mesh, resulting into mesh regions with greatly varying com-
putational work; thus creating a performance bottleneck. To reduce the computational imbalances
across the mesh, a Dynamic Load Balancing (DLB) algorithm can be used. The algorithm aims
to minimise the work imbalances across the computational domain by redistributing partitions of
the mesh at each processor based on a set of weights representative of the local work at each mesh
node.

Even though the implementation of a DLB algorithm on unstructured adapting meshes can greatly
improve parallel performance and runtimes, as shown in our previous work [1], the communication
costs associated with the migration of mesh elements during a DLB can be equally costly as the
computational work.

The aim of this work is to demonstrate how energy dependant angular adaptivity can be used to
provide a more robust and accurate solution in reactor physics problems, using a parallelly scalable
approach. We use our code FETCH2, developed by the AMCG in Imperial College London to per-
form DLB on energy dependent angularly adapting discretisations for a reactor physics benchmark
and measure the parallel performance and keff against the reference value.

2. THEORETICAL BACKGROUND

2.1. Angular adaptivity: Haar wavelets

A brief introduction to angular adaptivity with Haar wavelets is provided in this section, but for a
complete review we direct the reader to our previous work [2].

Haar wavelets HWN are hierarchical, with local support and form a non-rotationally invariant an-
gular discretisation. To reduce the discretisation error, or capture highly anisotropic fluxes one can
increase the number of waveletsN , thus creating a finer angular discretisation. However, uniformly
refining the angular discretisation is computationally unfavourable, hence performing localised re-
finement is preferred. Localised refinement or coarsening of the angular discretisation is known as
angular adaptivity. In general, adaptive methods aim to be implemented in automated and iterative
algorithms, without any a priori knowledge of where refinement should occur. Therefore to guide
adaptivity a quantity calculated a posteriori is needed, referred to as an error metric.

Due to the choice of Haar wavelets for our angular discretisation, we can form an error metric that
utilises the local support and hierarchical structure of our discretisation, but also wavelet specific
properties such as the norm-equivalence, wavelet cancellation and thresholding. As a result the
metric is capable of refining in areas where the angular flux is large or discontinuous. In more
detail, the error metric is defined using the problem solution ψ that has a residual R and an error
ε, with the exact solution having a residual equal to R(ψexact) = 0 and error ε = ψexact − ψ. A
threshold τ can be used to form an approximation e to the exact error given by e = ε ≈ |ψ|/τ .

When solving a reactor core problem, particle energies can vary greatly and hence, the optimal
angular discretisations between energy groups is likely to be different. More energetic particles,
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such as fast neutrons, will require fine angular discretisations to resolve streaming effects, while
lower energy particles such as thermal neutrons, can utilise coarser and more uniform angular dis-
cretisations due to their diffusive behaviour. Consequently, to decrease computational costs for the
already computationally demanding calculations of reactor cores an energy dependent angularly
adapting discretisation scheme can be employed.

There have only been two references in the literature where energy dependent angular adaptivity
has been used [3, 4]. Both of them by Goffin et al. from the AMCG in Imperial College London.
The first implementation used spherical harmonics while the latter used a linear octahedral wavelets
to perform goal-based angular adaptivity. Both implementations showed a reduction in the total
number of DOFs, with the linear wavelets also showcasing a speed-up of 2 between the energy
dependent and the energy independent angular discretisations. Although the results presented were
encouraging, the problems modelled were relatively simple, with only two energy groups and no
parallel processing or DLB was used.

2.2. Dynamic load balancing

As previously mentioned a DLB algorithm aims to ensure equal distribution of computational work
across all processors. This requires for the initial problem to be decomposed in partitions which are
then assigned to each processor. There are multiple ways a computational domain decomposition
can be performed; our implementation is based on a spatial mesh decomposition. The specific
algorithm used to decompose the spatial mesh and drive the core of the DLB algorithm is chosen
to be the graph partitioner ParMETIS [5] due to its short partitioning time and high mesh quality.

The DLB algorithm operates using a series of weights to represent the amount of computational
work present at each spatial node. The first step in the DLB algorithm is to determine whether load
balancing the spatial mesh is necessary hence, the work imbalance needs to be calculated. The
computational imbalance is estimated by taking the ratio between the sum of all the angular bassis
functions in a partition, over the average number of angular basis functions across all partitions.
This calculation yields the work imbalance η∗, which is a relative measure of the local partition
work compared against the average work in the problem.

If the work imbalance η∗ is greater than a user supplied imbalance tolerance η, then the mesh will
be repartitioned. For the mesh to be accurately balanced between partitions, work estimates for
each spatial node are required. We calculate the amount of work per node by taking the ratio of
the number of adapted angular basis functions at the node, normalised over the largest number of
angular basis functions across the entire computational domain. The weights are then supplied to
ParMETIS which returns a new spatial mesh decomposition.

The DLB algorithm checks for computational imbalances at the inner most loop of our power iter-
ation as it can be seen from Algorithm 1, with the purpose of creating optimally balanced partitions
for each Gauss-Seidel sweep through the energies. Performing the repartitioning at every Gauss-
Seidel sweep will inadvertently result into increased communications, which for multienergy prob-
lems will be prohibitively expensive. To minimise unnecessary communications similar energy
groups can be agglomerated into group sets thus, sharing their angular discretisation and reducing
communication costs.
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Algorithm 1: Dynamic Load Balancing algorithm of eigenvalue problems with energy depen-
dent angular adaptivity.

do
/* Start power solve */
while keff error ≤ keff relative tolerance do

/* Perform a Gauss-Seidel for all energy groups */
foreach group set do

/* Energy groups in a group set share the same angular expansion */
if work imbalance ≥ imbalance tolerance then

Compute work weights for spatial mesh;
Dynamic Load Balance the spatial mesh;

end
for energy group in group set do

Perform a linear solve; /* matrix-free FGMRES(30) */
end

end
end
foreach group set do

Compute angular error metric;
Adapt angular expansion;

end
while adapt step ≤ final adapt step;

Worth noting is the type of iterative method used, a matrix-free FGMRES(30) configured with a
multigrid preconditioner. The spatial discretisation is a sub-grid scale finite element discretisation.
We redirect the reader to [2, 6] for more details.

3. RESULTS

The algorithm was tested against the C5G7 NEA reactor physics benchmark [7], which has 7 en-
ergy groups, using the following set-up parameters. For the spatial mesh, we used an unstructured
triangular mesh, with 0.15 element spacing in the fuel assembly regions and reflect boundaries,
and 2.0 element spacing for the moderator region, resulting to a final mesh of 350,000 elements.
The mesh can be seen in more detail in Figure 1. The adaptivity algorithm was allowed to adapt
up to 4 orders (HW4), using an initial angular discretisation of 4 Continuous DOFs (CDOFs) per
spatial node, per energy group (HW1 which is equivalent to S2). The error metric tolerance was
set to τ = 1 × 10−3, which if adapted uniformly corresponds to 256 angular basis functions per
spatial node, per energy group. Finally for the iterative methods, we solved the power iteration to a
relative tolerance of 1× 10−5 as per the benchmark specifications. Every power iteration included
11 linear solves; four of which were due to upscattering effects from energy groups 4 to 7. All
linear solves were resolved to a relative tolerance of 1 × 10−10. The results were obtained using
ARCHER, a Cray XC30 and UK’s Tier 1 Supercomputing service, with 24 cores per compute
node. All the results presented where run using 5 nodes (120 cores).

The first important step is to determine whether using a using a energy dependent angular discreti-
sation is of any benefit and if DLB has any positive impact in the overall performance. We compare
two runs with energy dependent and independent angular discretisations. The energy dependent
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(a) (b)

Figure 1: (a) Full mesh showcasing our varying element size from fuel assemblies to the moderator. (b) Unstructured
mesh region near a fuel pin.

discretisation, uses 2 group sets, one for fast neutrons, including the first 3 energy groups and one
for the thermal neutrons, containing the remaining 4 energy groups. As angular adaptivity occurs,
the total problem size is observed to decrease, as shown in Table 1, yielding a reduction of 32% in
the number of CDOFs. The keff is added in the table as an indicator that the adaptivity algorithm
converges to the true solution of the benchmark.

Adapt
order

Energy independent Energy dependent

Av. CDOFs
per spatial node keff

Av. CDOFs
per spatial node keff

1 28 1.20568 28 1.20568
2 111 1.19081 111 1.19085
3 278 1.18774 224 1.18845
4 669 1.18695 451 1.18682

Table 1: Comparisson of average number of Continuous (CDOFs) per adapt step with the use of energy dependent
angular discretisations for all 7 energy groups, using a reference value 1.18655. The energy dependent angular

discretisation results in 32% less the DOFs.

Furthermore, Figures 2b and 2c serve as a depiction of where in the spatial mesh angular adaptivity
occurred, when using energy dependent angular discretisations. An expected but noteworthy result
are the spatial nodes where the energy independent angular discretisation, shown in Figure 2a, has
adapted. For the most part the adapted nodes appear to be just the union of the spatial nodes where
the energy dependent angular discretisations adapted.

In addition to the reduction of DOFs, the overall performance of energy dependent angular discreti-
sations with DLB was examined. Four different configurations were tested; an energy independent
angular adaptivity scheme with/out DLB and the previously discussed energy dependent scheme
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(a) (b) (c)

Figure 2: Plots indicating the number of angular basis functions present across the spatial mesh, normalised to one
energy group. (a) Energy independent angular adaptivity. (b-c) Energy dependent angular adaptivity split across 2

energy group sets (b) “Fast” energy groups (c) “Thermal” energy groups

with/out DLB. The results are shown in Figure 3 and indicate a 29% reduction in runtime by intro-
ducing energy dependent angular discretisations and a 38% improvement in runtime when using
energy dependent angular discretisations with DLB compared to the energy independent case, a
9% improvement.
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Figure 3: Comparisson of runtimes for energy dependent angular discretisation with angular adaptivity and dynamic
load balancing (DLB). The energy dependent, load balanced run resulted to 38% faster runtime.

Until now all the presented results had a fixed load imbalance tolerance of η = 1.25, which im-
plies work imbalances between partitions of up to 25% are tolerable. However, that value is not
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necessarily the optimal for the given problem, hence a short sensitivity analysis is performed to
determine whether, an optimal imbalance tolerance exists. The results are listed in Table 2.

Similarly to our previous work [1], our DLB algorithm appears to be insensitive to the value of the
work imbalance tolerance as shown in Table 2. With the exception of η = 1.05, where at the fourth
adapt order, imbalances due to heavily adapted regions start to grow, resulting in an increase in the
number of DLBs and thus a deterioration in the final runtime.

Tolerance Adapt order

1 2 3 4

Wall
Time [s]

η = 1.05 3310.2 6335.9 7835.0 25344.0

η = 1.25 3431.2 6291.2 10363.4 18808.1

η = 1.50 3362.3 6177.0 10159.6 19229.2

η = 2.50 3425.3 6307.3 10691.2 21759.9

Number of
Dynamic

Load
Balances
per adapt

η = 1.05 0 4 7 124

η = 1.25 0 0 17 14

η = 1.50 0 0 1 0

η = 2.50 0 0 0 0

% Time of
Dynamic

Load
Balancing

η = 1.05 0.083 0.086 0.166 1.159

η = 1.25 0.057 0.056 0.224 0.271

η = 1.50 0.058 0.056 0.053 0.037

η = 2.50 0.056 0.056 0.051 0.047

Table 2: Sensitivity analysis for imbalance tolerance. Comparisson of the effect of various values of imbalance
tolerances on the runtime, DLB time and DLB occurrences as a function of adapt order.

Based on the previous testing the most favourable configuration for the C5G7 benchmark uses:
energy dependent angular adaptivity with two group sets and DLB with η = 1.25. Using the above
configuration we performed a strong scaling study to examine the its scalability. The results from
the strong scaling study are listed in Table 3. A decrease in scaling performance is observed by
50% when the number of cores increases by ×8. The reason for performance decrease has been
identified in our previous work [1] to be due to increased communication costs arising from the
creation of very small spatial mesh partitions.

4. CONCLUSIONS

In this work we present a parallel algorithm suitable for performing heterogeneous reactor core
calculations on unstructured meshes by using energy dependent angular adaptivity and DLB, thus
resulting in improved runtimes. Our results indicated that is it computationally favourable to use
energy dependent angular discretisations, yielding a 29% reduction in runtimes. Applying DLB to
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Number of Processors: 120 240 480 960

Strong Scaling Performance: 100% 80.4% 59.3% 50.8%

Table 3: Strong scaling performance of FETCH2 with energy dependent angular adapting discretisations and DLB.

the run, further decreased the runtime by 32% and the CDOFs to 38% when compared to energy
independent angular adaptivity runs. Moreover, our strong scaling performance was measured
to be around 50% for a ×8 multiplier in the number of processors. A reasonable result given the
limitations that we identified in our previous work about adapting one mesh (the angular), but DLB
another (the spatial) [1]. It should be noted that the spatial mesh used for the benchmark due to its
varying element size in the fuel and moderator regions was balanced a priori, effectively reducing
the formation of large, disproportionate mesh partitions that were observed in [1]. Overall, we
believe that this work showcases the potential benefits of using angular adaptivity in large physical
problems such as reactor core calculations. Future work will include combining this work with
improved error metric calculations in order to perform space-angle adaptivity on large reactor
physics problems.
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