
IMPACT OF LOAD BALANCING ON PARALLEL PERFORMANCE
WITH HAAR WAVELETS ANGULAR ADAPTIVITY

Ioannis Nikiteas1, Steven Dargaville1, Christopher C. Pain1,
Paul N. Smith2, Richard P. Smedley-Stevenson1,3

1Applied Modelling and Computation Group, Imperial College London
London SW7 2AZ, UK

2ANSWERS Software Service, Wood PLC
Kimmeridge House, Dorset Green Technology Park,
Winfrith Newburgh, Dorchester, Dorset, DT2 8ZB

3AWE, Aldermaston, Reading, RG7 4PR, UK

ioannis.nikiteas17@imperial.ac.uk

ABSTRACT

This paper tests the performance gain of performing load balancing with angular adap-
tivity, that has been discretised using Haar wavelets. Load balancing on highly refined
angular meshes resulted into a reduction in the runtime of approximately 50% on a local
machine. The time spent load balancing was found to be proportional to the number of
unknowns of the problem, with the rate of the proportionality being dependant on the
number of processing cores used. Strong scaling performance of 97% was achieved in
240 cores, dropping to 50% for 480 cores, for a mesh of 405,000 triangular elements.
The ratio of nodes to halos indicates that as we adaptively refine, the load balancing al-
gorithm produces an increasing number of partitions with fewer nodes and larger halos.
Hence, destroying parallel scaling by performing communications instead of a solving
the linear system.
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1. INTRODUCTION

There exist two different approaches for modelling radiation transport phenomena, through the
use of either deterministic or stochastic numerical methods. Common deterministic numerical
methods such as Finite Element use a mesh and nodes to represent the geometry of the problem.
Given that the accuracy of the solution is correlated to the fineness of the mesh; in cases where
increased accuracy is required in the solution of the problem, the mesh can be refined locally which
is referred to as adaptive refinement.

Parallel radiation transport codes decompose the original mesh into smaller partitions and dis-
tribute its elements across multiple processing cores. A performance bottleneck is created when
the parallel performance of the code has to be maintained but simultaneously the mesh has to be



adaptively refined multiple times. By refining a partition, the number of degrees of freedom (ND-
OFs) in it increases and hence, the computational work that has to be performed on the adapted
partition increases as well. To reduce the computational work imbalance across the partitions, the
partitions have to be redrawn through a process referred to as load balancing. A single load balance
requires extensive communication between all of the decomposed partitions in order to obtain the
load imbalance across the entire computational domain. Then certain elements of the mesh have
to be redistributed across the newly generated partitions, which can be a time consuming process.
Therefore, by increasing the order of adaptive refinement the time spent load balancing on a mesh
is also inevitably increased.

This paper demonstrates the runtime improvements that have been achieved by performing load
balancing on an angular adaptive problem, where the angular domain has been discretised with
Haar wavelets. The code used for the radiation transport simulations is FETCH2, developed by the
AMCG in Imperial College London.

2. THEORETICAL BACKGROUND

2.1. Angular Discretisation: Haar Wavelet

Haar wavelets are a piecewise constant family of functions, which are hierarchical and compactly
supported [1, 2]. Using the two dimensional non-standard Haar wavelet discretisation found in [3],
it is possible to create an angular domain discretisation equivalent to a hierarchical P0 – DGFEM,
which forces a constant azimuthal angle in polar coordinates, shown in Figure 1a. With the term
adaptive order or adaptive step being used to signify the number of mesh refinements that have
occurred on the angular mesh.

(a) (b)

Figure 1: (a) Adapted fourth order (H4) Haar wavelet discretisation. (b) Quadtree representation of Haar wavelets in
one octant of the unit sphere. Shaded regions correspond to the area where the wavelets have support over.

As a result of the hierarchical nature of Haar wavelets and the forced equivalency between P0 –
DGFEM and the Haar wavelets, the discretisation can be represented with a hierarchical data
structure such as quad-trees. Figure 1b depicts a quad-tree, corresponding to an octant (quadrant
in 2D) of the discretised unit sphere from Figure 1a. In addition, the quad-trees carry unique
identifiers referred to as angle numbers representing all present elements in the nodes.



Notably, this specific discretisation not only does it allow for anisotropic angular resolution, but
simple arithmetic operations on the angle numbers can indicate the relative position of an element
in the angular discretisation or the parent element that the refined angle number is derived from;
simplifying the process of coarsening the angular mesh while maintainingO(n) scalability in both
runtime and memory consumption as shown by Dargaville et al. [3], with n corresponding to the
number of angles present in the node.

2.2. Spatial Discretisation: Sub-Grid Scale

For the spatial discretisation a sub-grid scale (SGS) formulation has been used [2, 4–6], where the
spatial mesh is divided into a “fine” and a “coarse” finite element mesh.The “fine” mesh holds the
Discontinuous Galerkin (DG) representation of the problem, while the “coarse” mesh holds the
Continuous Galerkin (CG).

The use of SGS results into a stabilised spatial discretisation, capable of handling heavy advection
problems. Moreover, SGS has been shown to reduce the number of Degrees of Freedom (DOF),
when compared to conventional DG methods, resulting into reduced memory requirements [2].

2.3. Adaptivity Algorithm

In this paper we only investigate the usage of regular Haar wavelet adaptivity in parallel, load
balanced simulations. A brief overview of the regular error metric is given below, but for a more
detailed description along with a Haar wavelet goal-based error metric see [3].

The Haar wavelet discretisation simplifies the adapting process by making use of the compact
support and hierarchy, allowing for local refinement and coarsening of the mesh, without need
to interpolate between adapt orders. Moreover, our wavelet space exploits norm-equivalence and
cancellation properties [3, 7]. The norm-equivalence suggests a direct relationship between the
norm of the Haar wavelet coefficients and the norm of the discretised function. Therefore, small
Haar wavelet coefficients have small contributions to the norm of the approximated function. The
cancellation properties refer to the Haar coefficients being small when the function is smooth, for
a given discretisation order, over the wavelet support [3, 7].

Thus the norm-equivalence and cancellation properties enable the use of a threshold value to drive
the adaptive refinement process, with large coefficients triggering refinement and small coefficients
causing coarsening [3, 7]. Adapting the angular discretisation results in different NDOFs at each
spatial node, which is depicted in Figure 2, where two different spatial nodes from the same spatial
mesh are shown after having adapted differently in angle.

The problem solved is described by an exact solution ψexact, which has a residual R and an error ε,
withR(ψexact) = 0 and ε ≡ ψexact−ψ respectively. As previously mentioned, Haar wavelets enable
the use of thresholding. Hence, given a threshold t the approximation e of the exact error can then
be calculated by e = ε ≈ |ψ|/t [3].

Important to note is the iterative method used by FETCH2, which is a FGMRES preconditioned by
a matrix-free multigrid solver with asynchronous capabilities for performing matrix-vector mul-
tiplications [3, 8, 9]. To perform the linear solves on the partition boundaries, certain nodes from
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Figure 2: Top-down view of two spatial nodes and their corresponding azipolar 2D adapted Haar wavelet
discretisations.

neighbouring partitions are required. These shared nodes are often referred to as halos. The halo
nodes are also where the asynchronous communications occur during a solve [3].

2.4. Dynamic Load Balancing Configuration

Dynamic Load Balancing (DLB) is used when performing adaptive refinement to minimise the
computational imbalances introduced by adaptivity and consequently reduce the total runtime time.
To redistribute the computational load across all processors a partitioning tool is required. FETCH2
has been configured with the graph partitioner ParMETIS [10].

The selection of ParMETIS was based on two requirements; short partitioning time and high mesh
quality. The DLB algorithm needs to be relatively cheap to compute compared to the main com-
putation, since periodic repartitioning may be required. Furthermore, the partitioning algorithm
should be able to yield high quality partitions, since higher quality partitions may result into shorter
runtimes. Graph partitioners have been documented to return the highest quality partitions out of
all other DLB algorithms, however they tend to be computationally expensive [11]. As it is show-
cased in Section 3 the time spent load balancing is only a minuscule fraction of the total runtime,
enabling us to use ParMETIS without a significant impact on the total runtime.

The adapted angular discretisation is load balanced by assigning a series of weights to all nodes
of the spatial mesh. The weights are representative of the adapted angular discretisation at each
spatial node and can therefore be used as a metric of the work across the computational domain.

In more detail, the DLB algorithm after every adaptive refinement calculates the load imbalance
τ ∗, by counting the size of angular expansions (NDOFs) present in a processor, for all processors.
The load imbalance can then be defined as the ratio between the processor with the most unknowns
(most heavily loaded) divided by the processor with the least (least heavily loaded). Load balancing
occurs if the load imbalance exceeds the imbalance tolerance τ . The default tolerance for all
calculations is set to τ = 1.05 , equivalent to tolerating a 5% load imbalance in the computations.

Furthermore, before repartitioning the mesh, weights need to be calculated for all spatial nodes by



taking the ratio of the angular expansion at every node and dividing with the greatest angular ex-
pansion in the entire spatial mesh. ParMETIS internally approximates the communications cost by
counting the number of edge-cuts in the graph of the partitions, therefore, no additional weighting
is required on the nodes to account for the inter-processor communications cost of load balancing.
Supplying the resulting list of weights to ParMETIS returns the load balanced spatial meshes. In
the improbable scenario that the partitioning algorithm has generated poor results, the load im-
balance is calculated again to check whether subsequent domain decompositions are required in a
single adaptive refinement step. Thus the order of execution of FETCH2 for a single adapt can be
represented by the flowchart shown in Figure 3.

Compute error metric Adapt angular mesh DLB Linear solve
next adapt step

Figure 3: FETCH2 flowchart for angular adaptivity and load balancing.

3. RESULTS

3.1. Brunner Lattice problem

Testing the performance and scalability of the load balancing algorithm was performed by creating
a highly asymmetrical case of the problem first proposed by Brunner [12], displayed in Figure 4a.
The test case includes a neutron source located in the top left corner, whilst surrounded by strong
absorbers and scatters.

The model was allowed to adapt the angular mesh to an adapt order of ten. The effects of increased
orders of adaptivity on the angular domain are displayed in Figures 4b–4d. Adapting the angular
mesh, refines the angular discretisation in areas where the neutron flux varies rapidly, such as in
the case of nodes near a neutron source. The finely discretised angular domain of a node contains
an increased number of unknown variables, hence, the computational work required to obtain a
solution on such node is increased. Consequently, mesh partitions containing multiple nodes that
have been refined require a greater amount of computational work and are therefore imbalanced.
The load imbalances caused by adaptivity when load balancing are disabled are provided in the
caption of Figures 4b–4d. All the data have been obtained using a value of e equal to 0.001, where
e is scaled against the maximum scalar flux.

Initially, the DLB was tested on a local 4 core machine with a mesh containing 3,200 triangular
elements and 6,600 Continuous Degrees of Freedom (CDOFs), where it was observed that the total
runtime of FETCH2, was reduced by a factor of two when DLB was enabled, as seen in Figure 6.
Moreover, the enlarged section of Figure 6 displays how there exist certain imbalance tolerances
that result into slightly better runtimes, but also how the performance of load balancing algorithm
is generally insensitive to the imbalance tolerance τ . A visualisation of load balancing is provided
by Figures 5a and 5b, where Figure 5a corresponds to the initial domain decomposition of the
mesh and Figure 5b corresponds to the domain decomposition at adapt order ten, where all four
partitions require the same computational work to evaluate the solution at their nodes. In both
cases, the halo nodes are not displayed.
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Figure 4: (a) Schematic of Brunner lattice. • is a pure scatterer, with a macroscopic total cross section of
Σt = 1cm−1, • is a pure absorber, with Σt = 10cm−1, • is the neutron source with strength 1cm−3 s−1 and
Σt = 10cm−1. (b)–(d) Visual representation of angular adaptivity at different adapt orders with the colourmap

displaying in a logarithmic scale the number of angles placed at a point in space. When load balancing is disabled the
load imbalance τ∗ increases exponentially after every adapt step; (b) adapt = 6, τ∗ = 94 (c) adapt = 8, τ∗ = 409

(d) adapt = 10, τ∗ = 698.

(a) (b)

Figure 5: Spatial domain decomposition that results from load balancing the angular domain at (a) adapt order 1,
initial mesh decomposition (b) adapt order 10.

The above problem was then run on ARCHER, the UK’s Tier 1 supercomputer (CRAY XC30),
in order to conduct a strong scaling study. A strong scaling study is performed by testing how
a problem of fixed size varies as the number of processors is altered. Two spatial meshes were
tested both using triangular elements, with mesh1, having 210,000 elements and 420,000 CDOFs
initially, and mesh2 having 405,000 triangular elements and 810,000 of CDOFs. The exponential
increase of the CDOFs can be seen in Figure 7, where every data point on a line corresponds to the
CDOFs at an adapt step.

Additionally, Figure 7 shows two important relations; first, the time spent load balancing is directly
proportional to the NDOFs in the discretisation and second, the rate of this proportionality is
dependant on the number of cores used.

The load balancing algorithm performs a spatial mesh decomposition, however, only the angular
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Figure 6: Total runtime as a function of the angular adaptive refinement run on a local 4 core machine.
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Figure 7: Time spent load balancing as function of the CDOFs, shows proportionality with the number of processors
and the number of CDOFs.

mesh is adapted. We expect that if the number of processors and/or the adapt order continue to
increase a point will be reached where the spatial decomposition, in some cores, will contain only a
small number of nodes and a large number of halo nodes. This is expected to be a generic problem,
true for all problems that angular adaptivity with DLB is applied, since the angular adaptivity drives
the DLB to produce asymmetrical spatial mesh decompositions.
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Figure 8: Strong scaling performance with the load balancing enabled. (a) Wall time performance. (b) Strong scaling
performance.

Even though after a load balance all the partitions require equal computational work, partitions
with few owned nodes and large halos are expected to be spending a considerable amount of time
performing parallel communications, which in turn would result in a loss of parallel performance.
The loss of parallel performance can be seen in Figure 8. With Figure 8a illustrating the exponential
decay in improvement of runtime performance as the number of cores increases, especially in the
case of 240 to 480 cores. Similarly, Figure 8b, showcases the strong scaling performance for
the Brunner problem. With mesh1, experiencing a steady decline in strong scaling performance,
reaching 80% for 240 cores and mesh2 sustaining a 97% strong scaling performance for 240 cores,
but then rapidly decreasing to 50% for the 480 core case.

Additionally, a useful parallel performance metric is the ratio between the number of owned nodes
in a partition and its halo size. A large ratio in a partition corresponds to good parallel perfor-
mance, while a smaller ratio implies more halo nodes and hence, a greater amount of time spent
doing parallel communications. Plotting the distributions of the ratios in the 240 and 480 core cases
for mesh2 provides further insight as to whether our predictions for the node/halo size impacting
parallel performance are true. First, Figure 9a depicts the initial spatial mesh decomposition. Both
the 240 and 480 core runs are similar. A major mode exists corresponding to the majority of the
partitions which have approximately equal ratios of nodes/halos. A second mode is present in the
distribution with a higher node/halo ratio and fewer occurrences corresponding to the boundary
partitions. The mesh boundaries have reduced halos and hence result to greater node/halo ratios.
Finally, certain partitions end up with fewer or greater number of neighbouring partitions than what
the average number is. The different number of nearest neighbours results into different halo pat-
terns and consequently marginally different node/halo ratios, causing the distribution to disperse.
After five adapt steps the major mode of the nodes/halos distribution has shifted noticeably to a
smaller ratio and the minor mode has dispersed to higher ratios causing the distribution to become



more bimodal as seen from Figure 9b. This trend amplifies as we adapt and/or increase the num-
ber of cores, resulting in the 480 core node/halo distribution into having ∼ 150 partitions with a
node/halo ratio of 2, on the fifth adapt step, as seen in Figure 9b.

It is important to emphasize, that all the partitions in Figure 9 are balanced with respect to their
computational work, but only the partitions of Figure 9a are (mostly) evenly sized between each
other.
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Figure 9: Distribution of the ratio between owned nodes in a partition over its halo nodes for mesh2. (a) Distribution
at adapt step 0. (b) Distribution at adapt step 5.

4. CONCLUSIONS

Load balancing an adaptively refined angular Haar wavelet discretisation shows promising results
for the runtime performance of the neutron transport code FETCH2, by reducing by half the wall-
time in local machines. In distributed memory machines, good (97%) strong scaling was achieved
by using meshes that had average node/halo ratios in the last adapt step greater or equal to 4. This
result is of course partially specific to the type the iterative method (FGMRES) and mesh partition-
ing tool (ParMETIS) used, but nevertheless minimising the size of the halos will yield improved
runtime performance in most cases. Finally, due to the strong scaling performance greatly de-
creasing in the limited strong scaling tests that were run, future work will involve improving the
performance of FETCH2 by investigating alternate communication patterns in our iterative solver
for partitions with small node/halo ratios.
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